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Probabilistic Modelling / Bayesian Analysis

In any modelling task, our choice of model structure / architecture
should encode our knowledge about the world.

What does it mean to be “Bayesian”?

e Place probability distributions over all model components about
which we are uncertain.

e In practice we're uncertain about most things, including the data.
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Example: Time-frequency analysis

We want to uncover the time-varying spectral content of a signal.

Typically in signal processing we use the STFT or a filter bank:

.
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Probabilistic time-frequency analysis

What are we uncertain about in TF analysis?

There are actually (infinitely) many ways that a given signal can be
decomposed into a sum of periodic components.

e which is the “right” one?

e which is the “right” one for your specific task?



Probabilistic time-frequency analysis

How should we choose the filter bank parameters?
e centre-frequency,
e bandwidth,

e scale



Probabilistic time-frequency analysis

How should we choose the filter bank parameters?
e centre-frequency,
e bandwidth,

e scale

filter response (dB)
e
)]
/

frequency (Hz)

logarithmically spaced



Probabilistic time-frequency analysis

How should we choose the filter bank parameters?
e centre-frequency,
e bandwidth,

e scale

filter response (dB)

= .

frequency (Hz)

logarithmically spaced



Probabilistic time-frequency analysis

How should we choose the filter bank parameters?
e centre-frequency,
e bandwidth,

e scale

filter response (dB)
filter response (dB)

= .

frequency (Hz)

logarithmically spaced fit to the signal



Probabilistic time-frequency analysis

How should we choose the filter bank parameters?
e centre-frequency,
e bandwidth,

e scale

filter response (dB)
filter response (dB)

frequency (Hz)

logarithmically spaced

fit to the signal

Benefits include: uncertainty quantification, can adapt to specific tasks,

generative (amplitude and phase correlations)
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Probabilistic time-frequency analysis

s

filter outputs

Place a Gaussian distribution over each frequency component. What
does it mean to specify a distribution over temporal data?

Integrate over all possible decompositions to find the statistically most
likely one given the data. Bayesian analysis provides a principled way
to do this without testing every scenario.



Specifying a distribution over temporal data

1D Gaussian: x; ~ N(u,0?)

_ 2 __
pn=0,02=02
1.5
——e— Mean
Py 95% confidence
Al
0 .
0.5}
ol
0 | | | | | | | |
Y 1 0 1 > 0 1 2 3 4 5
x1 Location



Specifying a distribution over temporal data

1D Gaussian: x; ~ N(u,0?)

_ 2 __
pn=0,02=02
1.5
——e— Mean
Py 95% confidence
Al
!
0 .
0.5}
ol
0 | L | | | | |
Y 1 0 1 > 0 1 2 3 4 5
x1 Location



Specifying a distribution over temporal data

1D Gaussian: x; ~ N(u,0?)

_ 2 __
pn=0,02=02
1.5
——e— Mean
Py 95% confidence
Al
!
0 .
+
0.5}
ol
0 | Lt | | | | |
Y 1 0 1 > 0 1 2 3 4 5
x1 Location



Specifying a distribution over temporal data

1D Gaussian: x; ~ N(u,0?)
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Distributions over temporal data - Gaussian processes

ooD Gaussian
Any finite set of locations we care to consider will be distributed as:
x ~ N(p,X)

This is called a Gaussian process.

We must define a mean function p(t) and covariance function (t, t').

Notation:
X(t) ~ G’D(/J’(t)a E(ta tl))
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The “squared exponential” covariance function

Another common choice:

p(t) =0

3(t, t') = o2 exp(—|t — t'|?/20?)
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The quasi-periodic covariance function

p(t) =0

3(t,t') = o2 cos(w(t — t')) exp(—|t — t'|?/2¢)
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The quasi-periodic covariance function

p(t) =0

3(t,t') = o2 cos(w(t — t')) exp(—|t — t'|?/2¢)

t - time / location
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Stochastic Differential Equations

GPs have a strong connection to stochastic differential equations
(SDEs).
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Stochastic Differential Equations

GPs have a strong connection to stochastic differential equations
(SDEs).

Assume X(t, t') = o2 exp(—|t — t'| /).

It can be shown that the SDE with this covariance is:

dx -1 %

& @

where 3 is a Brownian motion with spectral density 202 //.
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Stochastic Differential Equations

More generally, we can write (almost) any

x(t) ~ GP(u(t), %(t, t'))

as

12
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Discrete-time SDEs

The discrete-time representation of these SDEs is of the general form
2,1 =Aze+qr, q~N(0,Q),
Xk = Hz,
This gives us a new interpretation of sampling from a Gaussian process.
For exponential covariance:

A =exp(—A./l), Q=20"/l. H=1

e

| | | | | | J
2 4 6 8 10 12 14 16 18 20

k - time step
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But we're missing a crucial component - the data.
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Bayesian Analysis

In Bayesian analysis, a complete model is specified by:

The prior - our assumptions / the data generating process
p(x)
The likelihood - how we observe the data y given our prior

p(y|x)
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Bayesian Analysis

In our previous examples we could choose the following:

Prior p(x) = GP(u(t),2(t,t"))
Likelihood p(y|x) = N(x,o}l)

and

. dz(t) dg
P = Fz(t) + L
rior U z(t) + e
X(tk) = HZ(tk)
Likelihood  yy = x(tx) + oyek

where g4 ~ N(0,1) is Gaussian noise.

17



Bayesian Analysis
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Bayesian Analysis
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Bayesian Analysis
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How do we combine the prior and the likelihood to get the posterior?

18



Bayesian Analysis

prior p(x)
likelihood p(y|x)
posterior  p(x|y)

How do we combine the prior and the likelihood to get the posterior?

p(xly) = %P(Xd/)

18



Bayesian Analysis

prior p(x)
likelihood p(y|x)
posterior  p(x|y)

How do we combine the prior and the likelihood to get the posterior?

p(xly) = Zp(y)p(x)

18



Bayesian Analysis

prior p(x)
likelihood p(y|x)
posterior  p(x|y)

How do we combine the prior and the likelihood to get the posterior?

) = PUX)P(x)
e I p(ylx)p(x)dx

18



Bayesian Analysis

prior p(x)
likelihood p(y|x)
posterior  p(x|y)

How do we combine the prior and the likelihood to get the posterior?

ply|x)p(x)

p(xly) = ()

18



Bayesian Analysis

prior p(x)
likelihood p(y|x)
posterior  p(x|y)

How do we combine the prior and the likelihood to get the posterior?

ply|x)p(x)

p(xly) = ()

This is called Bayes rule.
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Marginal Likelihood

plylx)p(x)

p(xly) = o(y)

What is going on in the denominator?

p(y) = [ p(ylx)p(x)dx
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Marginal Likelihood

_ plylx, 0)p(x|0)

What is going on in the denominator?
p(y10) = [ p(ylx. 0)p(x|0) dx

We integrate over all possible values of the latent variable x. This gives
us the marginal likelihood.

It measures how much the data and the model “agree” with each
other.
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Marginal Likelihood

_ plylx, 0)p(x|9)

What is going on in the denominator?

p(y10) = [ pylx, 0)p(x|0) dx

This gives us a way to tune the model parameters. We treat it as an
optimisation problem: maximising p(y|6) with respect to 6.

19



Posterior calculations

Gaussian assumptions allow for efficient closed form calculations of
the posterior process.

20



Posterior calculations

Standard approach SDE approach
Posterior process characterised as Kalman filtering and smoothing
N(m, P) where returns the posterior.

prediction step:
m = Et*’t(zt’t—i‘ail)_ly
P =% —Ze o(Bee+00)) B,

m, =Amy_;
P, =AP,_;AT
t. = training locations

) update step:
t = test locations

Vi = yk — Himy
Sk =H(PH[ +7)
Ky =PiHS.!

m, =my + Kyvy

P, =P, — KK/

21



A probabilistic model for time-frequency analysis

(Matérn) Spectral Mixture GP:

[Prior] ~ GP(0, Z (¢, t')

[Likelihood]  yx = x(tx) + oy, &x,
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A probabilistic model for time-frequency analysis

(Matérn) Spectral Mixture GP:

[Prior] ~ GP(0, Z (¢, t')

[Likelihood] Yk = X(tk) + Oy, €k,
k(L t') = 03 cos(wy (t — t')) exp(—|t — t| /)
d=1,...,D frequency channels / filters

wy - centre frequency
l4 - controls the filter bandwidth

22



A probabilistic model for time-frequency analysis

k(L t') = 03 exp(—|t — '] /€q)

The SDE with this covariance is:

dx(t) dg
It =Fx(t) +L I

y(te) = Hx(tx) + oyex
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A probabilistic model for time-frequency analysis
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A probabilistic model for time-frequency analysis

@(t,t) =02 exp(—|t — t| /4q)

Ksm

The SDE with this covariance is:

dx(t) dg

y(te)  =Hx(t) + oyex
, and Fé‘)ﬁ) =—1/t4

B~ N(0,Q)
F(d) — ?Tl
273
F® a 0
F= 0 Q=

0 o 0 %I
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A probabilistic model for time-frequency analysis

What is the discrete form of F(9) = =1 ( Y _6"‘7’)?

Ly Wd
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A probabilistic model for time-frequency analysis

What is the discrete form of F(9) = =1 ( Y _6"‘7’)?

Ly
A(d) — exp(AtF(d))
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A probabilistic model for time-frequency analysis

What is the discrete form of F(9) = =1 ( Y _6"‘7’)?

Ly Wd

A(d) _ e%dl (coswd —sinwd)
- sinwy coswy

This describes a rotation with frequency wy, i.e. a phasor.

24



A probabilistic model for time-frequency analysis

[Prior] Xk+1 = AXg + g, qx ~ N(0,Q),
[Likelihood]  yx = Hxx + oy, ek

25



A probabilistic model for time-frequency analysis

(d) Ty (Coswy —sinwg ) 4 (d) (d)
Xk+1 =ex ( sinwg coswy ) xk + qk ’
Vi =(10..10) %k + Oy,
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A probabilistic model for time-frequency analysis

(d) Ty (Coswy —sinwg ) 4 (d) (d)
Xk+1 =ex ( sinwg coswy ) xk + qk ’
Vi =(10..10) %k + Oy,

Consider xs(d) = <Re(z£d)))

Il[l(Z‘Ed))
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(d) =
Xpky1 — ¢
Yk = (l 0

()
Consider xs(d) = Re(zfd))
Im(z,™)

d
Z l(<+)1 =

Yk =

(coswd 7sinwd) (d) + q

sinwy coswy

.. 10) Xk + Oy, Ek

e eiwdz,((d) + qid).,
D

Z Re(z,gd)) + oy, €k

d=1

A probabilistic model for time-frequency analysis
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A probabilistic model for time-frequency analysis

(d) %dl (coswd 7sinw,j) (d) + q(d)

sinwy coswy xk

e
Vi =(10..10) %k + Oy,

()
Consider xs(d) = Re(zfd))
Im(z,™)

(d)

iw d d
Zit1 :¢ e dz( )+ql(<)’

Y Z Re(z, ) + oy.ck
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A probabilistic model for time-frequency analysis

A0 = guerz 1 g,
D
v = Re(z”)+oye

d=1

25



A probabilistic model for time-frequency analysis

A = a9
D

Vi — Z Re(z,((d)) + oy, ek
d=1

This is called the probabilistic phase vocoder.
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Missing Data Synthesis

Audio signal reconstruction
1F T T T T
ol RN \r / \ \
[ Y
V‘ f |

20 25 30 35 40
time (ms)

Data imputation using a filter bank composed of the following kernels:
Matérnl/2 (exponential) - 15t order state space form

Matérn3/2 - 2" order state space form

Matérn5/2 - 3" order state space form
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Next steps

Watch this space:

e We're going to make this model really fast - i.e. real time processing.
e We're going to make it accessible.

e We're going to glue on a model for the amplitude (i.e. the
spectrogram) which measures correlation across frequency channels.

28



Thanks for listening - any questions?

Paper is here:
https://arxiv.org/abs/1811.02489
Code is here:

https://github.com/wil-j-wil/unifying-prob-time-freq

29
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Appendix - kernel comparison

Filter response / Spectral density Sinusoidal bases / Kernel functions
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