Probabilistic Models for Audio Signals
 an intro via time-frequency analysis

William Wilkinson
December 11, 2018
Queen Mary University of London

Probabilistic Modelling / Bayesian Analysis

In any modelling task, our choice of model structure / architecture should encode our knowledge about the world.

Probabilistic Modelling / Bayesian Analysis

In any modelling task, our choice of model structure / architecture should encode our knowledge about the world.

What does it mean to be "Bayesian"?

Probabilistic Modelling / Bayesian Analysis

In any modelling task, our choice of model structure / architecture should encode our knowledge about the world.

What does it mean to be "Bayesian"?

- Place probability distributions over all model components about which we are uncertain.

Probabilistic Modelling / Bayesian Analysis

In any modelling task, our choice of model structure / architecture should encode our knowledge about the world.

What does it mean to be "Bayesian"?

- Place probability distributions over all model components about which we are uncertain.
- In practice we're uncertain about most things, including the data.

Example: Time-frequency analysis

We want to uncover the time-varying spectral content of a signal.
Typically in signal processing we use the STFT or a filter bank:

Example: Time-frequency analysis

We want to uncover the time-varying spectral content of a signal.
Typically in signal processing we use the STFT or a filter bank:

audio signal

Example: Time-frequency analysis

We want to uncover the time-varying spectral content of a signal.
Typically in signal processing we use the STFT or a filter bank:

audio signal

filter bank

Example: Time-frequency analysis

We want to uncover the time-varying spectral content of a signal.
Typically in signal processing we use the STFT or a filter bank:

audio signal

filter bank

filter outputs

Example: Time-frequency analysis

We want to uncover the time-varying spectral content of a signal.
Typically in signal processing we use the STFT or a filter bank:

audio signal

filter bank

spectrogram

Probabilistic time-frequency analysis

What are we uncertain about in TF analysis?

Probabilistic time-frequency analysis

What are we uncertain about in TF analysis?

There are actually (infinitely) many ways that a given signal can be decomposed into a sum of periodic components.

Probabilistic time-frequency analysis

What are we uncertain about in TF analysis?

There are actually (infinitely) many ways that a given signal can be decomposed into a sum of periodic components.

- which is the "right" one?

Probabilistic time-frequency analysis

What are we uncertain about in TF analysis?

There are actually (infinitely) many ways that a given signal can be decomposed into a sum of periodic components.

- which is the "right" one?
- which is the "right" one for your specific task?

Probabilistic time-frequency analysis

How should we choose the filter bank parameters?

- centre-frequency,
- bandwidth,
- scale

Probabilistic time-frequency analysis

How should we choose the filter bank parameters?

- centre-frequency,
- bandwidth,
- scale

frequency (Hz)
logarithmically spaced

Probabilistic time-frequency analysis

How should we choose the filter bank parameters?

- centre-frequency,
- bandwidth,
- scale

frequency (Hz)
logarithmically spaced

Probabilistic time-frequency analysis

How should we choose the filter bank parameters?

- centre-frequency,
- bandwidth,
- scale

logarithmically spaced

frequency (Hz)
fit to the signal

Probabilistic time-frequency analysis

How should we choose the filter bank parameters?

- centre-frequency,
- bandwidth,
- scale

logarithmically spaced

frequency (Hz)
fit to the signal

Benefits include: uncertainty quantification, can adapt to specific tasks, generative (amplitude and phase correlations)

Probabilistic time-frequency analysis

Place a Gaussian distribution over each frequency component.

Probabilistic time-frequency analysis

Place a Gaussian distribution over each frequency component.

Integrate over all possible decompositions to find the statistically most likely one given the data.

Probabilistic time-frequency analysis

Place a Gaussian distribution over each frequency component. What does it mean to specify a distribution over temporal data?

Integrate over all possible decompositions to find the statistically most likely one given the data.

Probabilistic time-frequency analysis

Place a Gaussian distribution over each frequency component. What does it mean to specify a distribution over temporal data?

Integrate over all possible decompositions to find the statistically most likely one given the data. Bayesian analysis provides a principled way to do this without testing every scenario.

Specifying a distribution over temporal data

1D Gaussian: $x_{1} \sim N\left(\mu, \sigma^{2}\right)$
$\mu=0, \sigma^{2}=0.2$

Specifying a distribution over temporal data

1D Gaussian: $x_{1} \sim N\left(\mu, \sigma^{2}\right)$
$\mu=0, \sigma^{2}=0.2$

Specifying a distribution over temporal data

1D Gaussian: $x_{1} \sim N\left(\mu, \sigma^{2}\right)$
$\mu=0, \sigma^{2}=0.2$

Specifying a distribution over temporal data

1D Gaussian: $x_{1} \sim N\left(\mu, \sigma^{2}\right)$
$\mu=0, \sigma^{2}=0.2$

Specifying a distribution over temporal data

2D Gaussian: $x \sim N(\mu, \Sigma)$
$\boldsymbol{x}=\binom{x_{1}}{x_{2}}, \boldsymbol{\mu}=\binom{0}{0}, \boldsymbol{\Sigma}=\left(\begin{array}{lll}0.2 & 0.1 \\ 0.1 & 0.8\end{array}\right)$

Specifying a distribution over temporal data

2D Gaussian: $x \sim N(\mu, \Sigma)$
$\boldsymbol{x}=\binom{x_{1}}{x_{2}}, \boldsymbol{\mu}=\binom{0}{0}, \boldsymbol{\Sigma}=\left(\begin{array}{lll}0.2 & 0.1 \\ 0.1 & 0.8\end{array}\right)$

Specifying a distribution over temporal data

2D Gaussian: $x \sim N(\mu, \Sigma)$
$\boldsymbol{x}=\binom{x_{1}}{x_{2}}, \boldsymbol{\mu}=\binom{0}{0}, \boldsymbol{\Sigma}=\left(\begin{array}{lll}0.2 & 0.1 \\ 0.1 & 0.8\end{array}\right)$

Specifying a distribution over temporal data

2D Gaussian: $x \sim N(\mu, \Sigma)$
$\boldsymbol{x}=\binom{x_{1}}{x_{2}}, \boldsymbol{\mu}=\binom{0}{0}, \boldsymbol{\Sigma}=\left(\begin{array}{ll}0.2 & 0.1 \\ 0.1 & 0.8\end{array}\right)$

Specifying a distribution over temporal data

3D Gaussian: $\boldsymbol{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
$\boldsymbol{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right), \boldsymbol{\mu}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right), \boldsymbol{\Sigma}=\left(\begin{array}{llll}0.2 & 0.1 & 0.1 \\ 0.1 & 0.8 & 0.4 \\ 0.1 & 0.4 & 0.8\end{array}\right)$

Specifying a distribution over temporal data

4D Gaussian: $x \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
$\boldsymbol{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right), \boldsymbol{\mu}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right), \boldsymbol{\Sigma}=\left(\begin{array}{llll}0.2 & 0.1 & 0.1 & 0.0 \\ 0.1 & 0.8 & 0.4 & 0.1 \\ 0.1 & 0.4 & 0.8 & 0.2 \\ 0.0 & 0.1 & 0.2 & 0.4\end{array}\right)$

Specifying a distribution over temporal data

5D Gaussian: $\boldsymbol{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
$\boldsymbol{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right), \boldsymbol{\mu}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right), \boldsymbol{\Sigma}=\left(\begin{array}{lllll}0.2 & 0.1 & 0.1 & 0.0 & 0.0 \\ 0.1 & 0.8 & 0.4 & 0.1 & 0.0 \\ 0.1 & 0.4 & 0.8 & 0.1 & 0.1 \\ 0.0 & 0.1 & 0.1 & 0.2 & 0.1 \\ 0.0 & 0.0 & 0.1 & 0.1 & 0.4\end{array}\right)$

Specifying a distribution over temporal data

5D Gaussian: $x \sim N(\mu, \Sigma)$
$\boldsymbol{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right), \boldsymbol{\mu}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right), \boldsymbol{\Sigma}=\left(\begin{array}{lllll}0.2 & 0.1 & 0.1 & 0.0 & 0.0 \\ 0.1 & 0.8 & 0.4 & 0.1 & 0.0 \\ 0.1 & 0.4 & 0.8 & 0.1 & 0.1 \\ 0.0 & 0.1 & 0.1 & 0.2 & 0.1 \\ 0.0 & 0.0 & 0.1 & 0.1 & 0.4\end{array}\right)$

Specifying a distribution over temporal data

5D Gaussian: $\boldsymbol{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
$\boldsymbol{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right), \boldsymbol{\mu}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right), \boldsymbol{\Sigma}=\left(\begin{array}{lllll}0.2 & 0.1 & 0.1 & 0.0 & 0.0 \\ 0.1 & 0.8 & 0.4 & 0.1 & 0.0 \\ 0.1 & 0.4 & 0.8 & 0.1 & 0.1 \\ 0.0 & 0.1 & 0.1 & 0.2 & 0.1 \\ 0.0 & 0.0 & 0.1 & 0.1 & 0.4\end{array}\right)$

Specifying a distribution over temporal data

5D Gaussian: $x \sim N(\mu, \Sigma)$
$\boldsymbol{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right), \boldsymbol{\mu}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right), \boldsymbol{\Sigma}=\left(\begin{array}{lllll}0.2 & 0.1 & 0.1 & 0.0 & 0.0 \\ 0.1 & 0.8 & 0.4 & 0.1 & 0.0 \\ 0.1 & 0.4 & 0.8 & 0.1 & 0.1 \\ 0.0 & 0.1 & 0.1 & 0.2 & 0.1 \\ 0.0 & 0.0 & 0.1 & 0.1 & 0.4\end{array}\right)$

Distributions over temporal data - Gaussian processes

∞ D Gaussian

Any finite set of locations we care to consider will be distributed as:
$x \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

Distributions over temporal data - Gaussian processes

∞ D Gaussian

Any finite set of locations we care to consider will be distributed as:
$x \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
This is called a Gaussian process.

Distributions over temporal data - Gaussian processes

∞ D Gaussian

Any finite set of locations we care to consider will be distributed as:
$x \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
This is called a Gaussian process.
But how do we choose $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$, since we don't know a priori which locations we will be considering?

Distributions over temporal data - Gaussian processes

∞ D Gaussian

Any finite set of locations we care to consider will be distributed as:
$x \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
This is called a Gaussian process.

We must define a mean function $\boldsymbol{\mu}(t)$ and covariance function $\boldsymbol{\Sigma}\left(t, t^{\prime}\right)$.

Distributions over temporal data - Gaussian processes

∞ D Gaussian

Any finite set of locations we care to consider will be distributed as:
$x \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
This is called a Gaussian process.

We must define a mean function $\boldsymbol{\mu}(t)$ and covariance function $\boldsymbol{\Sigma}\left(t, t^{\prime}\right)$.
Notation:
$\boldsymbol{x}(t) \sim G P\left(\boldsymbol{\mu}(t), \boldsymbol{\Sigma}\left(t, t^{\prime}\right)\right)$

The exponential covariance function

The mean and covariance functions encode our prior knowledge. One common choice is:
$\boldsymbol{\mu}(t)=\mathbf{0}$

$$
\begin{aligned}
& \boldsymbol{\Sigma}\left(t, t^{\prime}\right)=\sigma^{2} \exp \left(-\left|t-t^{\prime}\right| / \ell\right) \\
& \sigma^{2}=1, \ell=10
\end{aligned}
$$

The exponential covariance function

The mean and covariance functions encode our prior knowledge. One common choice is:
$\boldsymbol{\mu}(t)=\mathbf{0}$
$\Sigma\left(t, t^{\prime}\right)=\sigma^{2} \exp \left(-\left|t-t^{\prime}\right| / \ell\right)$
$\sigma^{2}=1, \ell=10$

The exponential covariance function

The mean and covariance functions encode our prior knowledge.
One common choice is:
$\boldsymbol{\mu}(t)=\mathbf{0}$
$\boldsymbol{\Sigma}\left(t, t^{\prime}\right)=\sigma^{2} \exp \left(-\left|t-t^{\prime}\right| / \ell\right)$
$\sigma^{2}=1, \ell=10$

The exponential covariance function

The mean and covariance functions encode our prior knowledge. One common choice is:
$\boldsymbol{\mu}(t)=\mathbf{0}$
$\boldsymbol{\Sigma}\left(t, t^{\prime}\right)=\sigma^{2} \exp \left(-\left|t-t^{\prime}\right| / \ell\right)$
$\sigma^{2}=1, \ell=10$

The "squared exponential" covariance function

Another common choice:
$\mu(t)=0$

$$
\boldsymbol{\Sigma}\left(t, t^{\prime}\right)=\sigma^{2} \exp \left(-\left|t-t^{\prime}\right|^{2} / 2 \ell^{2}\right)
$$

The "squared exponential" covariance function

Another common choice:
$\boldsymbol{\mu}(t)=\mathbf{0}$

$$
\begin{aligned}
& \boldsymbol{\Sigma}\left(t, t^{\prime}\right)=\sigma^{2} \exp \left(-\left|t-t^{\prime}\right|^{2} / 2 \ell^{2}\right) \\
& \sigma^{2}=1, \ell=10
\end{aligned}
$$

The "squared exponential" covariance function

Another common choice:
$\boldsymbol{\mu}(t)=\mathbf{0}$

$$
\begin{aligned}
& \boldsymbol{\Sigma}\left(t, t^{\prime}\right)=\sigma^{2} \exp \left(-\left|t-t^{\prime}\right|^{2} / 2 \ell^{2}\right) \\
& \sigma^{2}=1, \ell=10
\end{aligned}
$$

The "squared exponential" covariance function

Another common choice:
$\boldsymbol{\mu}(t)=\mathbf{0}$

$$
\begin{aligned}
& \boldsymbol{\Sigma}\left(t, t^{\prime}\right)=\sigma^{2} \exp \left(-\left|t-t^{\prime}\right|^{2} / 2 \ell^{2}\right) \\
& \sigma^{2}=1, \ell=10
\end{aligned}
$$

The "squared exponential" covariance function

Another common choice:

$$
\boldsymbol{\mu}(t)=\mathbf{0}
$$

$$
\boldsymbol{\Sigma}\left(t, t^{\prime}\right)=\sigma^{2} \exp \left(-\left|t-t^{\prime}\right|^{2} / 2 \ell^{2}\right)
$$

The quasi-periodic covariance function

$$
\begin{aligned}
& \boldsymbol{\mu}(t)=\mathbf{0} \\
& \boldsymbol{\Sigma}\left(t, t^{\prime}\right)=\sigma^{2} \cos \left(\omega\left(t-t^{\prime}\right)\right) \exp \left(-\left|t-t^{\prime}\right|^{2} / 2 \ell\right)
\end{aligned}
$$

The quasi-periodic covariance function

$$
\begin{aligned}
& \boldsymbol{\mu}(t)=\mathbf{0} \\
& \boldsymbol{\Sigma}\left(t, t^{\prime}\right)=\sigma^{2} \cos \left(\omega\left(t-t^{\prime}\right)\right) \exp \left(-\left|t-t^{\prime}\right|^{2} / 2 \ell\right) \\
& \sigma^{2}=1, \ell=10
\end{aligned}
$$

Stochastic Differential Equations

GPs have a strong connection to stochastic differential equations (SDEs).

Stochastic Differential Equations

GPs have a strong connection to stochastic differential equations (SDEs).

Assume $\boldsymbol{\Sigma}\left(t, t^{\prime}\right)=\sigma^{2} \exp \left(-\left|t-t^{\prime}\right| / \ell\right)$.
It can be shown that the SDE with this covariance is:

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{-1}{\ell} x+\frac{\mathrm{d} \beta}{\mathrm{~d} t}
$$

where β is a Brownian motion with spectral density $2 \sigma^{2} / \ell$.

Stochastic Differential Equations

More generally, we can write (almost) any

$$
x(t) \sim G P\left(\boldsymbol{\mu}(t), \boldsymbol{\Sigma}\left(t, t^{\prime}\right)\right)
$$

as

$$
\begin{aligned}
\frac{\mathrm{d} \mathbf{z}(t)}{\mathrm{d} t} & =\mathbf{F z}(t)+\mathbf{L} \frac{\mathrm{d} \boldsymbol{\beta}}{\mathrm{~d} t}, \\
x\left(t_{k}\right) & =\mathbf{H z}\left(t_{k}\right)
\end{aligned}
$$

Discrete-time SDEs

The discrete-time representation of these SDEs is of the general form

$$
\begin{aligned}
& \mathbf{z}_{k+1}=\mathbf{A} \mathbf{z}_{k}+\mathbf{q}_{k}, \quad \mathbf{q}_{k} \sim \mathrm{~N}(\mathbf{0}, \mathbf{Q}), \\
& x_{k}=\mathrm{Hz}_{k}
\end{aligned}
$$

Discrete-time SDEs

The discrete-time representation of these SDEs is of the general form

$$
\begin{aligned}
& \mathbf{z}_{k+1}=\mathbf{A} \mathbf{z}_{k}+\mathbf{q}_{k}, \quad \mathbf{q}_{k} \sim \mathrm{~N}(\mathbf{0}, \mathbf{Q}), \\
& x_{k} \\
& =\mathbf{H} \mathbf{z}_{k}
\end{aligned}
$$

This gives us a new interpretation of sampling from a Gaussian process.
For exponential covariance:

$$
\mathbf{A}=\exp \left(-\Delta_{t} / \ell\right), \mathbf{Q}=2 \sigma^{2} / \ell, \quad \mathbf{H}=1
$$

Discrete-time SDEs

The discrete-time representation of these SDEs is of the general form

$$
\begin{aligned}
& \mathbf{z}_{k+1}=\mathbf{A} \mathbf{z}_{k}+\mathbf{q}_{k}, \quad \mathbf{q}_{k} \sim \mathrm{~N}(\mathbf{0}, \mathbf{Q}), \\
& x_{k} \\
& =\mathbf{H} \mathbf{z}_{k}
\end{aligned}
$$

This gives us a new interpretation of sampling from a Gaussian process.
For exponential covariance:

$$
\mathbf{A}=\exp \left(-\Delta_{t} / \ell\right), \mathbf{Q}=2 \sigma^{2} / \ell, \quad \mathbf{H}=1
$$

Bayesian Analysis

Now we can specify our prior knowledge and sample hypothetical signals. But we're missing a crucial component

Bayesian Analysis

Now we can specify our prior knowledge and sample hypothetical signals. But we're missing a crucial component - the data.

Bayesian Analysis

In Bayesian analysis, a complete model is specified by:
The prior

The likelihood

Bayesian Analysis

In Bayesian analysis, a complete model is specified by:
The prior - our assumptions / the data generating process

$$
p(x)
$$

The likelihood

Bayesian Analysis

In Bayesian analysis, a complete model is specified by:
The prior - our assumptions / the data generating process

$$
p(x)
$$

The likelihood - how we observe the data y given our prior

$$
p(y \mid x)
$$

Bayesian Analysis

In our previous examples we could choose the following:

$$
\begin{array}{lll}
\text { Prior } & p(x) & =G P\left(\boldsymbol{\mu}(t), \boldsymbol{\Sigma}\left(t, t^{\prime}\right)\right) \\
\text { Likelihood } & p(y \mid x) & =N\left(x, \sigma_{y}^{2} \mathbf{I}\right)
\end{array}
$$

and

$$
\begin{array}{lll}
\text { Prior } \quad & \frac{\mathrm{d} \mathbf{z}(t)}{\mathrm{d} t} & =\mathbf{F z}(t)+\mathbf{L} \frac{\mathrm{d} \boldsymbol{\beta}}{\mathrm{~d} t}, \\
x\left(t_{k}\right) & =\mathbf{H z}\left(t_{k}\right) \\
\text { Likelihood } \quad y_{k} & =x\left(t_{k}\right)+\sigma_{y} \varepsilon_{k}
\end{array}
$$

where $\varepsilon_{k} \sim N(0,1)$ is Gaussian noise.

Bayesian Analysis

prior $p(x)$

Bayesian Analysis

prior $\quad p\left(x_{4} \mid x_{1: 3}\right)$

Bayesian Analysis

$$
\begin{array}{ll}
\text { prior } & p\left(x_{4} \mid x_{1: 3}\right) \\
\text { likelihood } & p\left(y_{4} \mid x_{4}\right)
\end{array}
$$

Bayesian Analysis

$$
\begin{array}{ll}
\text { prior } & p\left(x_{4} \mid x_{1: 3}\right) \\
\text { likelihood } & p\left(y_{4} \mid x_{4}\right) \\
\text { posterior } & p\left(x_{4} \mid y_{4}\right)
\end{array}
$$

Bayesian Analysis

$$
\begin{array}{ll}
\text { prior } & p\left(x_{4} \mid x_{1: 3}\right) \\
\text { likelihood } & p\left(y_{4} \mid x_{4}\right) \\
\text { posterior } & p\left(x_{4} \mid y_{4}\right)
\end{array}
$$

Bayesian Analysis

$$
\begin{array}{ll}
\text { prior } & p\left(x_{4} \mid x_{1: 3}\right) \\
\text { likelihood } & p\left(y_{4} \mid x_{4}\right) \\
\text { posterior } & p\left(x_{4} \mid y_{4}\right)
\end{array}
$$

Bayesian Analysis

$$
\begin{array}{ll}
\text { prior } & p(x) \\
\text { likelihood } & p(y \mid x) \\
\text { posterior } & p(x \mid y)
\end{array}
$$

How do we combine the prior and the likelihood to get the posterior?

Bayesian Analysis

$$
\begin{array}{ll}
\text { prior } & p(x) \\
\text { likelihood } & p(y \mid x) \\
\text { posterior } & p(x \mid y)
\end{array}
$$

How do we combine the prior and the likelihood to get the posterior?

$$
p(x \mid y)=\frac{1}{Z} p(x, y)
$$

Bayesian Analysis

$$
\begin{array}{ll}
\text { prior } & p(x) \\
\text { likelihood } & p(y \mid x) \\
\text { posterior } & p(x \mid y)
\end{array}
$$

How do we combine the prior and the likelihood to get the posterior?

$$
p(x \mid y)=\frac{1}{Z} p(y \mid x) p(x)
$$

Bayesian Analysis

$$
\begin{array}{ll}
\text { prior } & p(x) \\
\text { likelihood } & p(y \mid x) \\
\text { posterior } & p(x \mid y)
\end{array}
$$

How do we combine the prior and the likelihood to get the posterior?

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{\int p(y \mid x) p(x) \mathrm{d} x}
$$

Bayesian Analysis

$$
\begin{array}{ll}
\text { prior } & p(x) \\
\text { likelihood } & p(y \mid x) \\
\text { posterior } & p(x \mid y)
\end{array}
$$

How do we combine the prior and the likelihood to get the posterior?

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

Bayesian Analysis

$$
\begin{array}{ll}
\text { prior } & p(x) \\
\text { likelihood } & p(y \mid x) \\
\text { posterior } & p(x \mid y)
\end{array}
$$

How do we combine the prior and the likelihood to get the posterior?

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

This is called Bayes rule.

Marginal Likelihood

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

What is going on in the denominator?
$p(y)=\int p(y \mid x) p(x) \mathrm{d} x$

Marginal Likelihood

$$
p(x \mid y, \theta)=\frac{p(y \mid x, \theta) p(x \mid \theta)}{p(y \mid \theta)}
$$

What is going on in the denominator?
$p(y \mid \theta)=\int p(y \mid x, \theta) p(x \mid \theta) \mathrm{d} x$

Marginal Likelihood

$$
p(x \mid y, \theta)=\frac{p(y \mid x, \theta) p(x \mid \theta)}{p(y \mid \theta)}
$$

What is going on in the denominator?
$p(y \mid \theta)=\int p(y \mid x, \theta) p(x \mid \theta) \mathrm{d} x$

We integrate over all possible values of the latent variable x. This gives us the marginal likelihood.

Marginal Likelihood

$$
p(x \mid y, \theta)=\frac{p(y \mid x, \theta) p(x \mid \theta)}{p(y \mid \theta)}
$$

What is going on in the denominator?
$p(y \mid \theta)=\int p(y \mid x, \theta) p(x \mid \theta) \mathrm{d} x$

We integrate over all possible values of the latent variable x. This gives us the marginal likelihood.

It measures how much the data and the model "agree" with each other.

Marginal Likelihood

$$
p(x \mid y, \theta)=\frac{p(y \mid x, \theta) p(x \mid \theta)}{p(y \mid \theta)}
$$

What is going on in the denominator?
$p(y \mid \theta)=\int p(y \mid x, \theta) p(x \mid \theta) \mathrm{d} x$
This gives us a way to tune the model parameters. We treat it as an optimisation problem: maximising $p(y \mid \theta)$ with respect to θ.

Posterior calculations

Gaussian assumptions allow for efficient closed form calculations of the posterior process.

Posterior calculations

Standard approach
Posterior process characterised as $N(\mathbf{m}, \mathbf{P})$ where

SDE approach

Kalman filtering and smoothing returns the posterior.
prediction step:

$$
\begin{aligned}
\mathbf{m} & =\boldsymbol{\Sigma}_{t_{*}, t}\left(\boldsymbol{\Sigma}_{t, t}+\sigma_{y}^{2} I\right)^{-1} \boldsymbol{y} \\
\mathbf{P} & =\boldsymbol{\Sigma}_{t_{*}, t_{*}}-\boldsymbol{\Sigma}_{t_{*}, t}\left(\boldsymbol{\Sigma}_{t, t}+\sigma_{y}^{2} I\right)^{-1} \boldsymbol{\Sigma}_{t, t_{*}}
\end{aligned}
$$

$t_{*}=$ training locations
$t=$ test locations

$$
\begin{aligned}
\mathbf{m}_{k} & =\mathbf{A} \mathbf{m}_{k-1} \\
\mathbf{P}_{k} & =\mathbf{A} \mathbf{P}_{k-1} \mathbf{A}^{\top}
\end{aligned}
$$

update step:

$$
\begin{aligned}
\mathbf{v}_{k} & =y_{k}-\mathbf{H}_{k} \mathbf{m}_{k} \\
\mathbf{S}_{k} & =\mathbf{H}_{k} \mathbf{P}_{k} \mathbf{H}_{k}^{\top}+\sigma_{y}^{2} \\
\mathbf{K}_{k} & =\mathbf{P}_{k} \mathbf{H}_{k}^{\top} \mathbf{S}_{k}^{-1} \\
\mathbf{m}_{k} & =\mathbf{m}_{k}+\mathbf{K}_{k} \mathbf{v}_{k} \\
\mathbf{P}_{k} & =\mathbf{P}_{k}-\mathbf{K}_{k} \mathbf{S}_{k} \mathbf{K}_{k}^{\top}
\end{aligned}
$$

A probabilistic model for time-frequency analysis

(Matérn) Spectral Mixture GP:
[Prior] $\quad x(t) \sim \operatorname{GP}\left(\mathbf{0}, \sum_{d=1}^{D} \kappa_{\mathrm{sm}}^{(d)}\left(t, t^{\prime}\right)\right)$,
[Likelihood] $\quad y_{k}=x\left(t_{k}\right)+\sigma_{y_{k}} \varepsilon_{k}$,

A probabilistic model for time-frequency analysis

(Matérn) Spectral Mixture GP:

$$
\text { [Prior] } \quad x(t) \sim \operatorname{GP}\left(\mathbf{0}, \sum_{d=1}^{D} \kappa_{\mathrm{sm}}^{(d)}\left(t, t^{\prime}\right)\right),
$$

[Likelihood] $\quad y_{k}=x\left(t_{k}\right)+\sigma_{y_{k}} \varepsilon_{k}$,
$\kappa_{\mathrm{sm}}^{(d)}\left(t, t^{\prime}\right)=\sigma_{d}^{2} \cos \left(\omega_{d}\left(t-t^{\prime}\right)\right) \exp \left(-\left|t-t^{\prime}\right| / \ell_{d}\right)$

A probabilistic model for time-frequency analysis

(Matérn) Spectral Mixture GP:

$$
\text { [Prior] } \quad x(t) \sim \operatorname{GP}\left(\mathbf{0}, \sum_{d=1}^{D} \kappa_{\mathrm{sm}}^{(d)}\left(t, t^{\prime}\right)\right),
$$

[Likelihood] $\quad y_{k}=x\left(t_{k}\right)+\sigma_{y_{k}} \varepsilon_{k}$,
$\kappa_{\mathrm{sm}}^{(d)}\left(t, t^{\prime}\right)=\sigma_{d}^{2} \cos \left(\omega_{d}\left(t-t^{\prime}\right)\right) \exp \left(-\left|t-t^{\prime}\right| / \ell_{d}\right)$
$d=1, \ldots, D$ frequency channels / filters

A probabilistic model for time-frequency analysis

(Matérn) Spectral Mixture GP:

$$
\text { [Prior] } \quad x(t) \sim \operatorname{GP}\left(\mathbf{0}, \sum_{d=1}^{D} \kappa_{\mathrm{sm}}^{(d)}\left(t, t^{\prime}\right)\right),
$$

[Likelihood] $\quad y_{k}=x\left(t_{k}\right)+\sigma_{y_{k}} \varepsilon_{k}$,
$\kappa_{\mathrm{sm}}^{(d)}\left(t, t^{\prime}\right)=\sigma_{d}^{2} \cos \left(\omega_{d}\left(t-t^{\prime}\right)\right) \exp \left(-\left|t-t^{\prime}\right| / \ell_{d}\right)$
$d=1, \ldots, D$ frequency channels / filters
ω_{d} - centre frequency

A probabilistic model for time-frequency analysis

(Matérn) Spectral Mixture GP:

$$
\text { [Prior] } \quad x(t) \sim \operatorname{GP}\left(\mathbf{0}, \sum_{d=1}^{D} \kappa_{\mathrm{sm}}^{(d)}\left(t, t^{\prime}\right)\right),
$$

[Likelihood] $\quad y_{k}=x\left(t_{k}\right)+\sigma_{y_{k}} \varepsilon_{k}$,
$\kappa_{\mathrm{sm}}^{(d)}\left(t, t^{\prime}\right)=\sigma_{d}^{2} \cos \left(\omega_{d}\left(t-t^{\prime}\right)\right) \exp \left(-\left|t-t^{\prime}\right| / \ell_{d}\right)$
$d=1, \ldots, D$ frequency channels / filters
ω_{d} - centre frequency
ℓ_{d} - controls the filter bandwidth

A probabilistic model for time-frequency analysis

$$
\kappa_{\mathrm{sm}}^{(d)}\left(t, t^{\prime}\right)=\sigma_{d}^{2} \cos \left(\omega_{d}\left(t-t^{\prime}\right)\right) \exp \left(-\left|t-t^{\prime}\right| / \ell_{d}\right)
$$

The SDE with this covariance is:

$$
\begin{aligned}
\frac{\mathrm{d} \mathbf{x}(t)}{\mathrm{d} t} & =\mathbf{F} \mathbf{x}(t)+\mathbf{L} \frac{\mathrm{d} \boldsymbol{\beta}}{\mathrm{~d} t} \\
y\left(t_{k}\right) & =\mathbf{H x}\left(t_{k}\right)+\sigma_{y} \varepsilon_{k}
\end{aligned}
$$

A probabilistic model for time-frequency analysis

$$
\kappa_{\mathrm{sm}}^{(d)}\left(t, t^{\prime}\right)=\sigma_{d}^{2} \cos \left(\omega_{d}\left(t-t^{\prime}\right)\right) \exp \left(-\left|t-t^{\prime}\right| / \ell_{d}\right)
$$

The SDE with this covariance is:

$$
\begin{aligned}
\frac{\mathrm{d} \mathbf{x}(t)}{\mathrm{d} t} & =\mathbf{F} \mathbf{x}(t)+\mathbf{L} \frac{\mathrm{d} \boldsymbol{\beta}}{\mathrm{~d} t} \\
y\left(t_{k}\right) & =\mathbf{H x}\left(t_{k}\right)+\sigma_{y} \varepsilon_{k}
\end{aligned}
$$

$\mathbf{F}_{\mathrm{cos}}^{(d)}=\left(\begin{array}{cc}0 & -\omega_{d} \\ \omega_{d} & 0\end{array}\right)$, and $\mathbf{F}_{\mathrm{exp}}^{(d)}=-1 / \ell_{d}$

A probabilistic model for time-frequency analysis

$$
\kappa_{\mathrm{sm}}^{(d)}\left(t, t^{\prime}\right)=\sigma_{d}^{2} \cos \left(\omega_{d}\left(t-t^{\prime}\right)\right) \exp \left(-\left|t-t^{\prime}\right| / \ell_{d}\right)
$$

The SDE with this covariance is:

$$
\frac{\mathrm{d} \mathbf{x}(t)}{\mathrm{d} t}=\mathbf{F} \mathbf{x}(t)+\mathbf{L} \frac{\mathrm{d} \boldsymbol{\beta}}{\mathrm{~d} t},
$$

$$
y\left(t_{k}\right)=\mathbf{H x}\left(t_{k}\right)+\sigma_{y} \varepsilon_{k}
$$

$$
\begin{aligned}
& \mathbf{F}_{\mathrm{cos}}^{(d)}=\left(\begin{array}{cc}
0 & -\omega_{d} \\
\omega_{d} & 0
\end{array}\right), \text { and } \mathbf{F}_{\mathrm{exp}}^{(d)}=-1 / \ell_{d} \\
& \mathbf{F}^{(d)}=\frac{-1}{\ell_{d}}\left(\begin{array}{cc}
0 & -\omega_{d} \\
\omega_{d} & 0
\end{array}\right)
\end{aligned}
$$

A probabilistic model for time-frequency analysis

$$
\kappa_{\mathrm{sm}}^{(d)}\left(t, t^{\prime}\right)=\sigma_{d}^{2} \cos \left(\omega_{d}\left(t-t^{\prime}\right)\right) \exp \left(-\left|t-t^{\prime}\right| / \ell_{d}\right)
$$

The SDE with this covariance is:

$$
\frac{\mathrm{d} \mathbf{x}(t)}{\mathrm{d} t}=\mathbf{F x}(t)+\mathbf{L} \frac{\mathrm{d} \boldsymbol{\beta}}{\mathrm{~d} t}
$$

$$
y\left(t_{k}\right)=\mathbf{H x}\left(t_{k}\right)+\sigma_{y} \varepsilon_{k}
$$

$$
\begin{gathered}
\mathbf{F}_{\mathrm{cos}}^{(d)}=\left(\begin{array}{cc}
0 & -\omega_{d} \\
\omega_{d} & 0
\end{array}\right), \text { and } \mathbf{F}_{\exp }^{(d)}=-1 / \ell_{d} \\
\mathbf{F}^{(d)}=\frac{-1}{\ell_{d}}\left(\begin{array}{cc}
0 & -\omega_{d} \\
\omega_{d} & 0
\end{array}\right) \\
\mathbf{F}=\left(\begin{array}{ccc}
\mathbf{F}^{(1)} & & 0 \\
& \ddots & \\
0 & & \mathbf{F}^{(D)}
\end{array}\right)
\end{gathered}
$$

A probabilistic model for time-frequency analysis

$$
\kappa_{\mathrm{sm}}^{(d)}\left(t, t^{\prime}\right)=\sigma_{d}^{2} \cos \left(\omega_{d}\left(t-t^{\prime}\right)\right) \exp \left(-\left|t-t^{\prime}\right| / \ell_{d}\right)
$$

The SDE with this covariance is:

$$
\begin{aligned}
\frac{\mathrm{d} \mathbf{x}(t)}{\mathrm{d} t} & =\mathbf{F} \mathbf{x}(t)+\mathbf{L} \frac{\mathrm{d} \boldsymbol{\beta}}{\mathrm{~d} t} \\
y\left(t_{k}\right) & =\mathbf{H} \mathbf{x}\left(t_{k}\right)+\sigma_{\mathbf{y}} \varepsilon_{k}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathbf{F}_{\text {cos }}^{(d)}=\left(\begin{array}{cc}
0 & -\omega_{d} \\
\omega_{d} & 0
\end{array}\right), \text { and } \mathbf{F}_{\text {exp }}^{(d)}=-1 / \ell_{d} & \boldsymbol{\beta} \sim N(0, \mathbf{Q})
\end{array}
$$

$$
\mathbf{F}^{(d)}=\frac{-1}{\ell_{d}}\left(\begin{array}{cc}
0 & -\omega_{d} \\
\omega_{d} & 0
\end{array}\right)
$$

$$
\mathbf{F}=\left(\begin{array}{ccc}
\mathbf{F}^{(1)} & & 0 \\
& \ddots & \\
0 & & \mathbf{F}^{(0)}
\end{array}\right)
$$

$$
\mathbf{Q}=\left(\begin{array}{ccc}
\frac{2 \sigma_{0}^{2}}{\ell_{1}} 1 & & 0 \\
& \ddots & \\
0 & & \frac{2 \sigma_{D}^{2}}{\ell_{D}} 1
\end{array}\right)
$$

A probabilistic model for time-frequency analysis

What is the discrete form of $\mathbf{F}^{(d)}=\frac{-1}{\ell_{d}}\left(\begin{array}{cc}0 & -\omega_{d} \\ \omega_{d} & 0\end{array}\right)$?

A probabilistic model for time-frequency analysis

What is the discrete form of $\mathbf{F}^{(d)}=\frac{-1}{\ell_{d}}\left(\begin{array}{cc}0 & -\omega_{d} \\ \omega_{d} & 0\end{array}\right)$?
$\mathbf{A}^{(d)}=\exp \left(\Delta_{t} \mathbf{F}^{(d)}\right)$

A probabilistic model for time-frequency analysis

What is the discrete form of $\mathbf{F}^{(d)}=\frac{-1}{\ell_{d}}\left(\begin{array}{cc}0 & -\omega_{d} \\ \omega_{d} & 0\end{array}\right)$?

$$
\mathbf{A}^{(d)}=\mathrm{e}^{\frac{-1}{\ell_{d}}}\left(\begin{array}{ll}
\cos \omega_{d} & -\sin \omega_{d} \\
\sin \omega_{d} & \cos \omega_{d}
\end{array}\right)
$$

A probabilistic model for time-frequency analysis

What is the discrete form of $\mathbf{F}^{(d)}=\frac{-1}{\ell_{d}}\left(\begin{array}{cc}0 & -\omega_{d} \\ \omega_{d} & 0\end{array}\right)$?

$$
\mathbf{A}^{(d)}=\mathrm{e}^{\frac{-1}{\ell_{d}}}\left(\begin{array}{cc}
\cos \omega_{d} & -\sin \omega_{d} \\
\sin \omega_{d} & \cos \omega_{d}
\end{array}\right)
$$

This describes a rotation with frequency ω_{d}, i.e. a phasor.

A probabilistic model for time-frequency analysis

$$
\begin{array}{lrl}
\text { [Prior] } & \mathbf{x}_{k+1} & =\mathbf{A} \mathbf{x}_{k}+\mathbf{q}_{k},
\end{array} \quad \mathbf{q}_{k} \sim \mathrm{~N}(\mathbf{0}, \mathbf{Q}), ~ 子
$$

A probabilistic model for time-frequency analysis

$$
\begin{aligned}
& \mathbf{x}_{k+1}^{(d)}=\mathrm{e}^{\frac{-1}{\bar{L}_{d}}}\left(\begin{array}{c}
\cos \omega_{d}-\sin \omega_{d} \\
\sin \omega_{d} \\
\cos \omega_{d}
\end{array}\right) \mathbf{x}_{k}^{(d)}+\mathbf{q}_{k}^{(d)}, \\
& y_{k}
\end{aligned}=\left(\begin{array}{ll}
10 \ldots & \ldots
\end{array}\right) \mathbf{x}_{k}+\sigma_{\mathrm{y}_{k}} \varepsilon_{k}, ~ l
$$

A probabilistic model for time-frequency analysis

$$
\begin{aligned}
& \mathbf{x}_{k+1}^{(d)}=\mathrm{e}^{\frac{-1}{\bar{l}_{d}}}\left(\begin{array}{c}
\cos \omega_{d}-\sin \omega_{d} \\
\sin \omega_{d} \\
\cos \omega_{d}
\end{array}\right) \mathbf{x}_{k}^{(d)}+\mathbf{q}_{k}^{(d)}, \\
& y_{k}
\end{aligned}=\left(\begin{array}{lll}
10 & \ldots & 10
\end{array}\right) \mathbf{x}_{k}+\sigma_{y_{k}} \varepsilon_{k}, ~ l
$$

Consider $\mathbf{x}_{k}^{(d)}=\binom{\operatorname{Ref}\left(z_{k}^{(d)}\right)}{\operatorname{Im}\left(z_{k}^{(d)}\right)}$

A probabilistic model for time-frequency analysis

$$
\begin{aligned}
& \mathbf{x}_{k+1}^{(d)}=\mathrm{e}^{\frac{-1}{\ell_{d}}}\left(\begin{array}{cc}
\cos \omega_{d} & -\sin \omega_{d} \\
\sin \omega_{d} & \cos \omega_{d}
\end{array}\right) \mathbf{x}_{k}^{(d)}+\mathbf{q}_{k}^{(d)}, \\
& y_{k} \\
& =\left(\begin{array}{llll}
1 & 0 & \ldots & 1
\end{array}\right) \mathbf{x}_{k}+\sigma_{\mathrm{y}_{k}} \varepsilon_{k}
\end{aligned}
$$

Consider $\mathbf{x}_{k}^{(d)}=\binom{\operatorname{Re}\left(z_{k}^{(d)}\right)}{\operatorname{Im}\left(z_{k}^{(d)}\right)}$

$$
\begin{aligned}
& z_{k+1}^{(d)}=\mathrm{e}^{\frac{-1}{\ell_{d}}} \mathrm{e}^{\mathrm{i} \omega_{d}} z_{k}^{(d)}+q_{k}^{(d)} \\
& y_{k}=\sum_{d=1}^{D} \operatorname{Re}\left(z_{k}^{(d)}\right)+\sigma_{\mathrm{y}_{k}} \varepsilon_{k}
\end{aligned}
$$

A probabilistic model for time-frequency analysis

$$
\begin{aligned}
& \mathbf{x}_{k+1}^{(d)}=\mathrm{e}^{\frac{-1}{\bar{l}_{d}}}\left(\begin{array}{c}
\cos \omega_{d}-\sin \omega_{d} \\
\sin \omega_{d} \\
\cos \omega_{d}
\end{array}\right) \mathbf{x}_{k}^{(d)}+\mathbf{q}_{k}^{(d)}, \\
& y_{k}
\end{aligned}=\left(\begin{array}{llll}
10 & \ldots & 10
\end{array}\right) \mathbf{x}_{k}+\sigma_{y_{k}} \varepsilon_{k}, ~ l
$$

Consider $\mathbf{x}_{k}^{(d)}=\binom{\operatorname{Re}\left(z_{k}^{(d)}\right)}{\operatorname{Im}\left(z_{k}^{(d)}\right)}$

$$
\begin{aligned}
& z_{k+1}^{(d)}=\psi_{d} \mathrm{e}^{\mathrm{i} \omega_{d}} z_{k}^{(d)}+q_{k}^{(d)}, \\
& y_{k}=
\end{aligned}
$$

A probabilistic model for time-frequency analysis

$$
\begin{aligned}
z_{k+1}^{(d)} & =\psi_{d} \mathrm{e}^{\mathrm{i} \omega_{d}} z_{k}^{(d)}+q_{k}^{(d)}, \\
y_{k} & =\sum_{d=1}^{D} \operatorname{Re}\left(z_{k}^{(d)}\right)+\sigma_{y_{k}} \varepsilon_{k}
\end{aligned}
$$

A probabilistic model for time-frequency analysis

$$
\begin{aligned}
z_{k+1}^{(d)} & =\psi_{d} \mathrm{e}^{\mathrm{i} \omega_{d}} z_{k}^{(d)}+q_{k}^{(d)}, \\
y_{k} & =\sum_{d=1}^{D} \operatorname{Re}\left(z_{k}^{(d)}\right)+\sigma_{y_{k}} \varepsilon_{k}
\end{aligned}
$$

This is called the probabilistic phase vocoder.

Demo

Missing Data Synthesis

Audio signal reconstruction

Data imputation using a filter bank composed of the following kernels:
Matérn $1 / 2$ (exponential) - $1^{\text {st }}$ order state space form
Matérn $3 / 2-2^{\text {nd }}$ order state space form
Matérn $5 / 2-3^{\text {rd }}$ order state space form

Next steps

Watch this space:

- We're going to make this model really fast - i.e. real time processing.
- We're going to make it accessible.
- We're going to glue on a model for the amplitude (i.e. the spectrogram) which measures correlation across frequency channels.

Summary

Thanks for listening - any questions?

Paper is here:

> https://arxiv.org/abs/1811.02489

Code is here:
https://github.com/wil-j-wil/unifying-prob-time-freq

Appendix - kernel comparison

Filter response / Spectral density

Covariance matrices

Sinusoidal bases / Kernel functions

Freq. channel data / Sample trajectories

