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Probabilistic Modelling / Bayesian Analysis

In any modelling task, our choice of model structure / architecture

should encode our knowledge about the world.

What does it mean to be “Bayesian”?

• Place probability distributions over all model components about

which we are uncertain.

• In practice we’re uncertain about most things, including the data.
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Example: Time-frequency analysis

We want to uncover the time-varying spectral content of a signal.

Typically in signal processing we use the STFT or a filter bank:
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Probabilistic time-frequency analysis

What are we uncertain about in TF analysis?

Benefits include: uncertainty quantification, can adapt to specific tasks,

generative (amplitude and phase correlations)
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How should we choose the filter bank parameters?

• centre-frequency,

• bandwidth,

• scale
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Probabilistic time-frequency analysis

...

filter outputs

Place a Gaussian distribution over each frequency component.

What

does it mean to specify a distribution over temporal data?

Integrate over all possible decompositions to find the statistically most

likely one given the data. Bayesian analysis provides a principled way

to do this without testing every scenario.
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Specifying a distribution over temporal data

1D Gaussian: x1 ∼ N(µ, σ2)

µ = 0, σ2 = 0.2
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Specifying a distribution over temporal data
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Specifying a distribution over temporal data
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Distributions over temporal data - Gaussian processes

∞D Gaussian

Any finite set of locations we care to consider will be distributed as:

x ∼ N(µ,Σ)

This is called a Gaussian process.

But how do we choose µ and Σ, since we don’t know a priori which

locations we will be considering?
We must define a mean function µ(t) and covariance function Σ(t, t ′).

Notation:

x(t) ∼ GP(µ(t),Σ(t, t ′))
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The exponential covariance function

The mean and covariance functions encode our prior knowledge.

One common choice is:

µ(t) = 0

Σ(t, t ′) = σ2 exp(−|t − t ′|/`)

σ2 = 1, ` = 10
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The “squared exponential” covariance function

Another common choice:

µ(t) = 0

Σ(t, t ′) = σ2 exp(−|t − t ′|2/2`2)

σ2 = 1, ` = 10
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The “squared exponential” covariance function
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The quasi-periodic covariance function

µ(t) = 0

Σ(t, t ′) = σ2 cos(ω(t − t ′)) exp(−|t − t ′|2/2`)

σ2 = 1, ` = 10
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The quasi-periodic covariance function

µ(t) = 0
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Stochastic Differential Equations

GPs have a strong connection to stochastic differential equations

(SDEs).

Assume Σ(t, t ′) = σ2 exp(−|t − t ′|/`).

It can be shown that the SDE with this covariance is:

dx

dt
=
−1

`
x +

dβ

dt

where β is a Brownian motion with spectral density 2σ2/`.
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Stochastic Differential Equations

More generally, we can write (almost) any

x(t) ∼ GP(µ(t),Σ(t, t ′))

as

dz(t)

dt
= Fz(t) + L

dβ

dt
,

x(tk) = Hz(tk)
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Discrete-time SDEs

The discrete-time representation of these SDEs is of the general form

zk+1 = Azk + qk , qk ∼ N(0,Q),

xk = Hzk

This gives us a new interpretation of sampling from a Gaussian process.

For exponential covariance:

A = exp(−∆t/`), Q = 2σ2/`, H = 1
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Bayesian Analysis

Now we can specify our prior knowledge and sample hypothetical signals.

But we’re missing a crucial component

- the data.
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Bayesian Analysis

In Bayesian analysis, a complete model is specified by:

The prior

- our assumptions / the data generating process

p(x)

The likelihood

- how we observe the data y given our prior

p(y |x)
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Bayesian Analysis

In our previous examples we could choose the following:

Prior p(x) = GP(µ(t),Σ(t, t ′))

Likelihood p(y |x) = N(x , σ2
y I)

and

Prior
dz(t)

dt
= Fz(t) + L

dβ

dt
,

x(tk) = Hz(tk)

Likelihood yk = x(tk) + σyεk

where εk ∼ N(0, 1) is Gaussian noise.
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Bayesian Analysis

prior p(x)
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Bayesian Analysis

prior p(x)

likelihood p(y |x)

posterior p(x |y)

How do we combine the prior and the likelihood to get the posterior?
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Bayesian Analysis

prior p(x)

likelihood p(y |x)

posterior p(x |y)

How do we combine the prior and the likelihood to get the posterior?

p(x |y) =
p(y |x)p(x)

p(y)

This is called Bayes rule.
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Marginal Likelihood

p(x |y) =
p(y |x)p(x)

p(y)

What is going on in the denominator?

p(y) =
∫
p(y |x)p(x)dx
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It measures how much the data and the model “agree” with each

other.
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Marginal Likelihood

p(x |y , θ) =
p(y |x , θ)p(x |θ)

p(y |θ)

What is going on in the denominator?

p(y |θ) =
∫
p(y |x , θ)p(x |θ)dx

This gives us a way to tune the model parameters. We treat it as an

optimisation problem: maximising p(y |θ) with respect to θ.
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Posterior calculations

Gaussian assumptions allow for efficient closed form calculations of

the posterior process.

20



Posterior calculations

Standard approach

Posterior process characterised as

N(m,P) where

m = Σt∗,t(Σt,t + σ2
y I )
−1y

P = Σt∗,t∗ −Σt∗,t(Σt,t + σ2
y I )
−1Σt,t∗

t∗ = training locations

t = test locations

SDE approach

Kalman filtering and smoothing

returns the posterior.

prediction step:

mk = Amk−1

Pk = APk−1AT

update step:

vk = yk −Hkmk

Sk = HkPkHT
k + σ2

y

Kk = PkHT
k S−1

k

mk = mk + Kkvk

Pk = Pk −KkSkKT
k
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A probabilistic model for time-frequency analysis

(Matérn) Spectral Mixture GP:

[Prior] x(t) ∼ GP(0,
D∑

d=1

κ(d)
sm(t, t ′)),

[Likelihood] yk = x(tk) + σyk
εk ,

κ
(d)
sm(t, t ′) = σ2

d cos(ωd (t − t ′)) exp(−|t − t ′|/`d)

d = 1, . . . ,D frequency channels / filters

ωd - centre frequency

`d - controls the filter bandwidth
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A probabilistic model for time-frequency analysis

κ
(d)
sm(t, t ′) = σ2

d cos(ωd (t − t ′)) exp(−|t − t ′|/`d)

The SDE with this covariance is:

dx(t)

dt
= Fx(t) + L

dβ

dt
,

y(tk) = Hx(tk) + σyεk

F
(d)
cos =

(
0 −ωd
ωd 0

)
, and F

(d)
exp = −1/`d

F(d) = −1
`d

(
0 −ωd
ωd 0

)

F =

 F(1)

0. . .
0 F(D)



β ∼ N(0,Q)

Q =


2σ2

1
`1

I 0
. . .

0 2σ2
D

`D
I
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A probabilistic model for time-frequency analysis

What is the discrete form of F(d) = −1
`d

(
0 −ωd
ωd 0

)
?

A(d) = exp(∆tF(d))

A(d) = e
−1
`d

(
cosωd −sinωd
sinωd cosωd

)
This describes a rotation with frequency ωd , i.e. a phasor.

Re(x)

ωd

Im(x)
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A probabilistic model for time-frequency analysis

[Prior] xk+1 = Axk + qk , qk ∼ N(0,Q),

[Likelihood] yk = Hxk + σyk
εk
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A probabilistic model for time-frequency analysis

x
(d)
k+1 = e

−1
`d

(
cosωd −sinωd
sinωd cosωd

)
x

(d)
k + q

(d)
k ,

yk = (1 0 ... 1 0) xk + σyk
εk
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A probabilistic model for time-frequency analysis

z
(d)
k+1 = ψde

iωd z
(d)
k + q

(d)
k ,

yk =
D∑

d=1

Re(z
(d)
k ) + σyk
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A probabilistic model for time-frequency analysis

z
(d)
k+1 = ψde

iωd z
(d)
k + q

(d)
k ,

yk =
D∑

d=1

Re(z
(d)
k ) + σyk

εk

This is called the probabilistic phase vocoder.
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Demo
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Missing Data Synthesis

0 5 10 15 20 25 30 35 40

−1

0

1

time (ms)

Audio signal reconstruction

Data imputation using a filter bank composed of the following kernels:

Matérn1/2 (exponential) - 1st order state space form

Matérn3/2 - 2nd order state space form

Matérn5/2 - 3rd order state space form
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Next steps

Watch this space:

• We’re going to make this model really fast - i.e. real time processing.

• We’re going to make it accessible.

• We’re going to glue on a model for the amplitude (i.e. the

spectrogram) which measures correlation across frequency channels.
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Summary

Thanks for listening - any questions?

Paper is here:

https://arxiv.org/abs/1811.02489

Code is here:

https://github.com/wil-j-wil/unifying-prob-time-freq
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Appendix - kernel comparison
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