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Motivation

GPs for time series can be reformulated as state-space models (Markov GPs)
with e�cient inference via filtering and smoothing.

Many operations during inference can be parallelised, but GPUs do not handle
sequential filtering e�ciently.
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Many operations during inference can be parallelised, but GPUs do not handle
sequential filtering e�ciently. How can we speed things up?
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Sparse Markovian Gaussian processes (Adam et. al., 2020)

Markovian Gaussian Processes on 1D inputs, x,

f ∼ GP(0, κ(x, x′)) ←→
{
ds(x)
dx = Fs(x) + Lw(x)
f (x) = Hs(x)

Sparse Markov GPs define inducing states u = s(z): evaluations of the SDE at a
reduced set of inputs z = z1, . . . , zM.

The number of sequential steps is reduced from N to M — good for GPU processing.

Compute: O((N∗ +M)d3) Memory: O(Md2)
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Site-Based Inference I

Our main contribution is to develop site-based inference for sparse Markov GPs.

Approximate the GP posterior as:

p(f | y) ∝ p(f)
∏
n
p(yn | fn) ≈

∫
p(u)p(f | u)

∏
m
tm(um,um+1) du

where the approximate likelihoods (sites), tm(um,um+1), only depend on the local
inducing states due to the Markov property.
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Site-Based Inference II

All inference methods amount to di�erent ways of updating tm(·, ·).

Natural gradient variational inference (VI)
Power expectation propagation (PEP)
Classical Kalman Smoothers

Site-based inference unifies these methods, but also has computational and
stability benefits over the previous VI approach.
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Example: Regression

−→ Forward FILTERING pass
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Thanks for listening

william.wilkinson@aalto.fi

https://github.com/AaltoML/Newt

https://github.com/AaltoML/Newt

